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Abstract

The birth of the Yang-Mills theory has provided such a profound intersection of complex geometric
analysis and mathematical physics. The core of its theory lies on a study of connections on complex
vector bundles where curvatures naturally rise to show the Yang-Mills functional; the progression
toward critical points satisfies the Yang-Mills equation in turn. In this paper, we focus on complex
geoemtry point of view in order to observe the foundations of Yang-Mills theory and rigorously
derive the complexity of its functional, variations, and the equation.
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Chapter 1: Introduction

1.1 Preface
In the early 20th century, Hermann Weyl first introduced the gauge theory, conjecturing that the
gauge transformation(i.e.local rescaling via length) in the law of physics should be invariant; Weyl
attempted to show the symmetry, in which to unify the electromagnetism with general relativity
(cf.Weyl [13]). Decades later, in 1954, physicists Chen-Ning Yang and Robert Laurence Mills
published a seminar article on the Physical Review, titled Conversation of Isotopic Spin and Isotopic
Gauge Invariance [14]. The main goal in physics was to discuss the new idea of generalization of
the electromagnetism to a non-Abelian gauge group. In particular, considering a simplest case,
Yang and Mills proposed a theory of describing the interactions of subnuclear forces that are gauge
invariant if the U(1) electromagnetism replaced by SU(2). This is what we call the non-Abelian
gauge theory, and in modern terms, it is well-known as the Yang-Mills theory. Ever since the theory
has been introduced, leading toward the evolution of theoretical physics and mathematics, including
particle physics, quantum field theories, and differential and algebraic geometry. Especially, along
with substantial physical development, 1970s and 1980s were prime times for the development of
Yang-Mills theory from geometric perspectives led by Atiyah, Bott, Hitchin, Kobayashi, Uhlenbeck,
Donaldson, Yau, and their collaborators.

This thesis, however, neither has the aim to claim significant original results nor to express
new theories from previous influential contributions; but rather, focusing on the complex geoemtry
point of view, it is an exposition that wishes to present a self-contained and lucid introduction
to the Yang-Mills theory. Briefly showing the big picture, the new gauge field introduced by
Yang and Mills is the Yang-Mills field, and through the complex geoemtry perspective, we first
analyze connections and curvatures on complex vector bundles in order to gain insights. Here, the
associated functional defined on connections over a complex vector bundle valued in the space of
endomorphisms is called the Yang-Mills functional. Then, the Euler-Lagrange equation(i.e.critical
points) of this functional, corresponding to connections whose curvatures lead directly toward the
non-linear partial differential equation, is the Yang-Mills equation. Finally, the solutions of the
Yang-Mills equation is called the Yang-Mills field, which is equivalent to say the connections that
satisfies the equation.

1.2 Construction
The original electromagnetism and the Yang-Mills theory were formulated based on spacetime
manifolds equipped with Lorentz metric, the Minkowski space. However, since our viewpoint is
on complex geometry, we work on base arbitrary complex manifold associated with a Hermitian
metric, and in particular, for a speical case, we take the base metric as Kähler. Now, the structure
of this paper is as follows. Chapter 2 builds solid fundamental geometric aspects of complex
geoemtry, starting with complex vector bundles, connections, and curvature. The main reference
is from chapter 1, Differential Geometry of Vector Bundles by Shoshichi Kobayashi [6], and it is
explained in a sophisticated manner. Next, analyzing the differential forms allow us to represent
deRham cohomology class and this is chapter 3 on Characteristic classes. We focus on the Second
Bianchi Identity and the Chern-Weil theory; for the reference, it is heavily from section 13,14,
and appendix C from Characteristic Classes by Milnor and Stasheff [11]. The following chapter 4
thoroughly demonstrates the core of this paper. We state the main theorem.
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Theorem 1.2.1 (Donaldson [3],Yang-Mills [14]). The Yang-Mills functional is the following
functional associated with any unitary connection, ∇, such that,

∇→I(∇) =
∫

X
∥F∇∥2

√
gdx (1.1)

Then, the critical points of the Yang-Mills functional I(∇) is the Yang-Mills equation

∇pFpq
α
β = 0 (1.2)

,and rigorously by the variational formula, we can express the Yang-Mills equation as

d†
∇F = 0 (1.3)

Then, in chapter 5, we show the basic examples and solutions of the Yang-Mills theory. Start
with the Maxwell’s equation [8] as an example, then (anti)self-dual solutions. In fact, the author
collected concrete celebrated result from Anti Self-Dual Yang-Mills Connections over Complex
Algebraic Surfaces and Stable Vector Bundles by Simon Donaldson [2]. Stretching from the self-
dual solutions, Belavin-Polyakov-Schwartz-Tyuptin demonstrated solutions known as the BPST-
Instantons [1], and this is on the last section of chapter 5. The final chapter of this paper explains
the Yang-Mills theory on Kähler case. The basic introduction of Kähler geometry is from chapter
11,13, and 13 from Lecture on Kähler Geometry by Moroianu [9] and section 1 from Holomorphic
Vector Fields on Compact Kähler Manifolds by Matshshima [7]. The Yang-Mills equation on Kähler
manifolds is from Donaldson [2] and Uhlenbeck-Yau [12].

1.3 Fundamental Concepts
We first begin by unpacking the original definitions from the article by R.L. Mills and C.N. Yang.

Definition 1.3.1 (Gauge invariance, Nakahara [10]). If the Lagrangian(i.e.action) from the field
theory remains unchanged, then it is said to be gauge invariant. Formally, if we have a field
ψ, associated with a local transformation T belonging to its Lie group(i.e.T ∈Lie(ψ)), then the
transformation is followed as

ψ→ψ′ =T ·ψ
, where T is depend on unitiary space-time metric. e.g. det(T ) = 1 in SU(2). Since ∂jψ would not
covariantly transformed in local coordinates, we introduce a connection Aj(i.e.Gauge potential),
and define the covariant derivative by

∇jψ= ∂jψ+ igAjψ

Note that g is a gauge coupling constant, which quantifies the strength of the interaction between
the field ψ and the connection Aj .

Remark 1.3.2 (Kirillov [5]). A Lie group(real or complex) is a smooth manifold with a group
structure given by a multiplication map m :G×G→G and an inversion i :G→G, such that, both
m and i are smooth. For example, we have

SU(2) = {A∈GL(2,C)|AĀt = 1,det(A) = 1}

, and explicitly, we can define

SU(2) =
{(

α β

−β̄ ᾱ

)
|α,β ∈C,|α|2 + |β|2 = 1

}
If we take α=x1 + ix2 and β=x3 + ix4 for any xi ∈R, then we easily see that SU(2) is diffeomorphic
to S3⊂R4.
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Definition 1.3.3 (Isotopic gauge, Yang-Mills [14]). The essence of isotopic spin is the idea that
neutrons and protons are not distinct, but two states of the same particle(i.e.field). Let φ be a field
that carries isotopic spin with local transformation T ∈SU(2). Then an isotopic spin rotation is
the local SU(2) gauge transformation followed by the gauge invariance

φ→φ′ =T ·φ

By the same analogue from gauge invariance, given the connection A, we define the covariant
derivative as ∇jφ= ∂jφ+ igAjφ. The covariant derivative transforms homogenously

∇jφ→∇j
′φ=T∇jφ

,where the associated curvature of the gauge field is given by

Fjk = ∂jAk−∂kAj + ig[Aj ,Ak]

Having said, the isotopic gauge is arbitrary way of choosing the orientiation of the isotopic spin axes
at all space time, extending the notion of local gauge invariance with respect to U(1) symmetry.

Establishing the basic notions of complex analysis and geometry is fruitful since this will be the
main language of what follows. Though, of course, such detailed proofs will be omitted as complex
analysis itself is not our focus. Further definitions below are straight from chapter 1,2, and 3 of
Complex Analysis by Stein and Shakarachi [11], and chapter 1 and 2 of Complex Geometry An
Introduction by Huybrechts [4].

Definition 1.3.4 (Holomorphic and meromorphic functions). Let U→C be and open subset. A
function f :U→C is called holomorphic, if there exists a ball Bϵ(zj) of radius ϵ> 0 around for any
point zj ∈U , such that the function f can be written as a convergent power series,

f(z) =
∞∑

n=0
an(z−zj)n for all z ∈Bϵ(zj)

,or equivalently, a function f is said to be holomorphic, if for any point zj ∈U is complex
differentiable. Which means, the limit

f ′(zj) = lim
h→0

f(zj +h)−f(zj)
h

exists for all zj ∈U

The intuition of holomorphicity encourages from realizing the condition of complex differentiability
and hence analytic in any open subset of C. Next, a function f is meromorphic in U , if there exsits
a sequence of points {z0,z1,z2,...} that has no limit poins in U , and such that the f is holomorphic
in U \{z0,z1,z2,...}, and f has poles at the points {z0,z1,z2,...}.

Remark 1.3.5. A complex number zj is zero for the holomorphic function f is f(zj) = 0. A deleted
neighborhood of zj is denoted by the set O= {z : 0< |z−zj |<r} for some r > 0. Then, a function
f defined on O has a pole at zj . Conversely, if the funtion 1

f is zero at zj , it is holomorphic in a
full neighborhood of zj .

Definition 1.3.6 (Cauchy-Riemann equations). The complex function f of two variables can
be written in the form f(x,y) =µ(x,y)+ iν(x,y). Then f is holomorphic if and only if µ,ν are
continuously differentiable and satisfying the equation

∂µ

∂x
= ∂ν

∂y
,
∂µ

∂y
=−∂ν

∂x
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Definition 1.3.7 (Complex and Hermitian structure). Let V be a finite dimensional real vector
space. Then, an endomorphism J :V →V with J2 =−Id is called (almost) complex structre on V .
This map J must satisfies the linearity, such that, for all x,y ∈R and u,v ∈V ,

J(xv+yu) =xJv+yJu

Now a positive-definite bilinear form H :V ×V →R, such that, for all u,v ∈V ,

H(Ju,Jv) =H(u,v)

is called Hermitian structure on V . It is often described as a complex inner product on complex
vector space.

Definition 1.3.8 (Complex manifold). A complex manifold X of Cn is a topological space,
satisfying Hausdorffness, second countability, and locally euclidean. That is, from a holomorphic
atlas (Uj ,φj) of the form φj :Uj ≃φj(Ui)⊂Cn, the transition functions

φjk =φj ◦φk
−1 :φk(Uj∩Uk)→φj(Uj∩Uk)

are holomorphic. So, a n-dimensional complex manifold X is a 2n-dimensional real differentiable
manifold endowed with an equivalence class of holomorphic atlases.

1.4 Acknowledgment
The author would like to express immense gratitude for Professor Duong H. Phong of conducting
a senior thesis as whole and providing smooth directions. In particular, for the detailed comments
of the multiple preliminary versions along with fantastic lecture series throughout the 2023-2024
academic year on Complex Analysis and Riemann Surfaces. This paper wouldn’t even possible to be
initiated without Professor Phong’s supervision as the subject is highly advanced and sophisticated.
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Chapter 2: Complex Vector Bundles, Connections, and Curvature

2.1 Vector Bundles
Complex vector bundles are smooth vector bundles, whose fibers are complex vector spaces. Initially,
we can consider complex vector bundles in which each fiber is a vector space over the complex
numbers. Also, since the notion of smooth vector bundles is defined on smooth manifolds, we
fix topological spaces M and E be smooth manifolds. Then we can apply the condition of local
triviality: for each point m∈M , there exists a neighborhood U ⊂M , and a diffeomorphism

φ :U×Cn→π−1(U) for any n∈Z≥0

where π :E→M is a smooth projection map. i.e. For each m∈M , there exists a pair (U,φ),
which is a local coordinate system with m∈U , such that φ be a diffeomorphism. Here, the
vector space π−1(m) is called the fiber over m. Satisfying the local triviality requirements, we
obtain complex vector bundles. However, for a geometric intuition, we are especially interested
in bundles on Riemann Surfaces, a one-dimensional complex manifolds. Here, we can observe the
concrete structre, which is a line bundle, where the fibers are one-dimensional complex vector space.
Proceeding it further, we will define line bundles, in order to construct vector bundles.

Definition 2.1.1 (Riemann Surface). X is called a Riemann Surface, if X =
⋃
Xµ(union of small

neighborhoods) defined on a complex plane C, having the property

Φµ :Xµ→D(unit disk)⊆C

, and for all µ,ν the local coordiate map:

Φν ◦Φ−1
µ : Φµ(Xµ∩Xν)→Φν(Xµ∩Xν)

is holomorphic, 1-1 form, and (Φν ◦Φ−1
µ )′(z) ̸= 0(invertible differential). Note that for a notational

sanity, z is coordinate of the point in Xµ, which is Φµ : z 7→ zµ ∈D.

Definition 2.1.2. A holomorphic line bundle L→X , denoted L over X is an assignment

L←→{tµν(z) characterized by transition functions onXµ∩Xν}, satisfying

the cocyle condition: tµνtνξ = tµξ onXµ∩Xν ∩Xξ

Here, we have Γ(X ,L) = {sectionsφ ofL}, and in practice, we view line bunde L as same as the
space Γ(X ,L) of its sections, so then

Γ(X ,L)∋φ←→φµ(zµ) functions on Φµ(Xµ), satisfying

the glueing condition:φµ(zµ) = tµν(z)φν(zν) onXµ∩Xν

Definition 2.1.3. Since the set up is similar to line bundles, a holomorphic vector bundle E →X ,
denoted E overX , is an assignment

E ←→{tµν
α
β , 1≤α,β≤ r, defined onXµ∩Xν}, satisfying
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the cocyle condition: tµν
α
β tνξ

β
γ = tµξ

α
γ defined onXµ∩Xν ∩Xξ

Note that such trasition functions here are matrix-valued functions, having two indices α and β.
Here, we also have smooth sections: Γ(X ,E) = {sections ofφ of E}, and see

Γ(X ,E)∋φ←→φµ
α(zµ) vector-valued funtions on Φµ(Xµ), satisfying

the glueing condition:φµ
α(zµ) = tµν

α
β(z)φβ

ν (zν) onXµ∩Xν

Now, from the sections, we fix a holomorphic vector bundle Γ(X ,E)∋φ= {φµ}. Then the
covariant derivatives are defined as:

∂̄φ≜ { ∂

∂z̄j φdz̄
j}= { ∂

∂z̄j
µ
φα

µdz̄
j
µ onXµ}

Since the glueing condition is φα
µ = tµν

α
βφ

β
ν on Xµ∩Xν , we can easily check that

∂

∂z̄j
µ
φα

µ = tµν
α
β

∂

∂z̄j
µ
φβ

ν = tµν
α
β

∂z̄k
ν

∂z̄j
µ

∂

∂z̄k
ν

φβ
ν = tµν

α
β

(
∂

∂z̄k
ν

φβ
ν

)
∂

∂z̄k
ν

, and notice that such naive differentiation of φα
µ would only result in vector-valued funtions, but not

satisfying desired glueing condition. In order to differentiate in zj direction, we have to introduce
connections.

2.2 Connections
Definition 2.2.1. A connection on E is a linear mapping, such that,

∇ : Γ(X ,E)→Γ(X ,E ⊗Λ1), where Λ1 is a bundle of one-form onX .

In fact, this can be described locally as ∇φα = dxj∇jφ
α with ∇jφ

α = ∂jφ
α +Aα

j β
φβ.

One significant connection is Chern Unitary Connection. To see this, we will define Chern
connection and unitary condition.

Definition 2.2.2 (Chern connections). Fix a holomorphic vector bundle E →X , where X is a
complex manifold. i.e. The coordinate map Φν ◦Φ−1

µ is a holomorphic function, having the glueing
condition:

φµ
α(zµ) = tµν

α
β(z)φβ

ν (zν) defined onXµ∩Xν

with a holomorphic trasition function tµν
α
β(z). Here, if we take zµ = zµ

k, for 1≤ k≤ dimX, then,
by the holomorphicity of tµν

α
β(z), we have:

∂

∂z̄k
µ

φα
µ(zµ) = tµν

α
β(z) ∂

∂z̄k
µ

φν
β(zν) = tµν

α
β(z)∂z̄

j
ν

∂z̄k
µ

∂

∂z̄j
ν

φβ
ν (zν)

This means, ∂
∂z̄k

µ
φα

µ(zµ) transforms as a section of a vector bundle with a transition function

tµν
α
β(z) ∂z̄j

ν

∂z̄k
µ

; in fact, we may see that tµν
α
β(z) as E , and ∂z̄j

ν

∂z̄k
µ

as Λ0,1− form. i.e. This is

∂

∂z̄k
µ

φα
µ(zµ)∈Γ(X ,E ⊗Λ0,1)

, and we can always define the Chern connection ∇k̄φ
α as

Γ(X ,E)∋φ→∇k̄φ
α = ∂φα

∂z̄k
∈Γ(X ,E ⊗Λ0,1)
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Now, the holomorphicity of a vector bundle E →X determines only half of the connection: ∇k̄,
which we defined above. In order to show ∇j , we need such unitary of a connection, and we will
proceed further to define the unitary condition.

Definition 2.2.3 (The Unitary Condition). Here, we fix a metric on E to be Hermitian, denoted
Hᾱβ on E . The Hermitian metric Hᾱβ determines by the inner product on Γ(X ,E):

Γ(X ,E)∋φα,ψ→⟨φ,ψ⟩=φαψβHβ̄α, which is a scalar.

Then, we say a connection ∇ is unitary, if

∂j⟨φ,ψ⟩= ⟨∇jφ,ψ⟩+⟨φ,∇k̄ψ⟩

Hence, having the unitary condition, we can solve for ∇jφ:

∂j(φαψβHβ̄α) = (∇jφ)αHβ̄αψ
β +φα(∂k̄ψ)βHβ̄α

; so then,
ψβ (∂jφ

α)Hβ̄α +φαψβ∂jHβ̄α = (∇jφ)αHβ̄αψ
β

,and since
(∂jφ

α)Hβ̄α +φα∂jHβ̄α = (∇jφ)αHβ̄α

we find
(∇jφ)α =Hαβ̄∂j

(
Hβ̄γφ

γ
)
, where

(
Hβ̄γφ

γ
)

is anti-holomorphic bundle.

Definition 2.2.4. Putting Chern connection and the unitary condition, the following is well-defined
connection in a basic complex geometry:Γ(X ,E)∋φ →∇k̄φ

α ∈Γ(X ,E ⊗Λ0,1)
Γ(X ,E)∋φ →∇jφ

α =Hαβ̄∂j

(
Hβ̄γφ

γ
)

, and this is called the Chern unitary connection.

2.3 Curvature
Knowing the connection and vector bundles, we are now ready to show the curvature, and to do
this, we first introduce exterior differentials.

Definition 2.3.1. The extented differential is defines as:

d∇ : Γ(X ,E ⊗Λp)→Γ(X ,E ⊗Λp+1)

Recall that on any smooth manifold X , there is a well-defined exterior differential operator

d : Γ(X ,E ⊗Λp)→Γ(X ,E ⊗Λp+1) characterized by df = dxj ∂f

∂xj
for any f ∈Γ(X ,Λ0)

However, such definitions do not require any further structure;so, what we need to focus in
topology is the following the equation:

d2 = 0 (2.1)

Suppose we are give a vector bundle E →X , then we can generalize the exterior differential operator:

d : Γ(X ,E ⊗Λp)→Γ(X ,E ⊗Λp+1) to an operator d∇ : Γ(X ,E ⊗Λp)→Γ(X ,E ⊗Λp+1)
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by setting naively

d∇
( ∑

|J |=p

φα
Jdx

J)=
∑

|J |=p

(d∇φ
α
J )∧dxJ (Λp+1 valued form in E)

Knowing the connection∇, it is easy to check that d∇ is well-defined; however, the equation
d2 = 0 is now modifed as the following:

d2
∇φ=F ∧φ forφ∈Γ(X ,E ⊗Λp), whereF is vector-valued two forms (2.2)

To see this, let φ∈Γ(X ,E), we compute:

d∇φ=∇jφ
αdxj

d2
∇φ= d∇(∇jφ

α)∧dxj

=∇k(∇jφ
α)dxk∧dxj (anti-symmetrized)

= 1
2(∇k∇jφ

α−∇j∇kφ
α)dxk∧dxj (by commutator)

= 1
2
(
Fkj

α
βφ

β
)
dxk∧dxj

Now, close work on the commutator, where

∇k∇jφ
α−∇j∇kφ

α =∇k(∂jφ
α +Aj

α
βφ

β)−∇j(∂kφ
α +Ak

α
βφ

β)

expand RHS further to see

= ∂k

(
∂jφ

α +Aj
α
βφ

β
)

+Aα
kγ

(
∂jφ

γ +Aj
γ
βφ

β
)
−∂j

(
∂kφ

α +Ak
α
βφ

β
)
−Aj

α
γ

(
∂kφ

γ +Ak
γ
βφ

β
)

=Fkj
α
β
φβ

with, Fkj
α
βφ

β = ∂kAα
j β
−∂jAα

k β +Aα
k γAγ

j β−Aα
j γAγ

k .

Clearly, in matrix notation,

Fkj = ∂kAj−∂jAk +AkAj−AjAk

In summary, the curvature of complex vector bundles is given by

[∇j ,∇k]φα =Fk̄j
α
β
φβ , where Fk̄j

α
β

=−∂k̄Aj
α
β , and

F =Fα
k̄jβ

dxj∧dx̄k ∈Γ(X ,Λ1,1⊗End(E))

More generally, for any connection A, the curvature is defined with the form

F = dA+A∧A

.
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Chapter 3: Characteristic Classes

In this chapter, we set E →X be complex vector bundles as we defined above. The characteristic
classes of complex vector bundles are Chern class. From the PDE point of view, our curvature FA
satisfies a set of non-linear PDEs. Then we first introduce the Bianchi identity as it ensures the
consistency and well-defineness of the curvature form.

3.1 Bianchi Identity
Definition 3.1.1 (The Second Bianchi Identity). We first recall that F = dA+A∧A. So then, by
the Leibniz’ rule,

dF = d(A∧A) = dA∧A−A∧dA
= (dA+A∧A)−A∧(dA+A∧A)
=F ∧A−A∧F

Then, we find the identity:
dF−F∧A+A∧F = 0 (3.1)

It is important to note that any curvature always satisfies this second Bianchi identity. Next, as
we view the curvature F in a section of Λ2⊗End(E), we may observe that the exterior differential
d∇F = dF+A∧F−F∧A= 0. Thus, we find

The Second Bianchi Identity holds if and only if d∇F = 0 (3.2)

3.2 Chern Class
In this section, we will show the key theorems of the Chern-Weil Theory. In fact, we stated complex
vector bundles by showing the line bundles; so, following the natural analogy, we first show the
Chern-class from holomorphic line bundles over Riemann surfaces.

Definition 3.2.1. Let L→X be holomorphic lines bundles over Riemann surface X . Then, a
metric H on L is a section φ of L−1⊗L̄−1, which satisfies H > 0 so that

Γ(X ,L)∋φ→Hφφ̄ = |φ|2> 0 which is a positive scalar

Then the Chern-unitary connection is given by

∇zφ=H−1∂z (Hφ) = ∂zφ+
(
H−1∂zH

)
φ and ∇z̄φ= ∂z̄φ

Since H−1∂zH =Az, in matrix notation, we can express this as

Az̄ = 0,Az = ∂z logH

The curvature of L is shown by the commutator rule

[∇z̄,∇z]φ = (∇z̄∇z)φ−(∇z∇z̄)φ= ∂z̄{∂zφ+(∂z̄logH)φ}−{∂j (∂z̄φ)+(∂zlogH)∂z̄φ}
= (∂z̄∂zlogH)φ=−Fz̄zφ

i.e.Fz̄z =−∂z̄∂zlogH and the curvature form F =Fz̄zdz∧dz̄
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Finally, we end up with defining the first Chern-class. Consider Γ(X ,L)∋φ be meromorphic, then
we have

(♯zeroes of φ)−(♯poles of φ) = i

2π

∫
X
Fzz̄dz∧dz̄= i

2π

∫
X
F =C1(L)

Now, let E →X be a smooth complex vector bundle. For any connection ∇ having the matrix
form A and curvature form F , we set a rank for any integer i∈Z.

Ci(A) =Tr(F ∧···(i−factors)···∧F)∈Γ(X ,Λ2i) , where F is in a space of endomorphism

Theorem 3.2.2. Ci(A) is always a closed form

Proof. We employ the second Bianchi identity and impose Leibniz rule. Then,

dCi =Tr
∑

(F ∧···∧dF ∧F)

=Tr
∑

(F ∧···∧(−A∧F+F ∧A)∧···F)
= 0, sinceTr(AB) =Tr(BA) which is commutative.

Q.E.D.

Theorem 3.2.3. The deRham cohomology class does not depend on the connection A. We call
[Ci(A)] be the i-th characteristic class of a vector bundle E.

Proof. Let A,A′ be two connections. Fix B be a well-defined one-form, and write A′ =A+B. We
claim that Ci(A′)−Ci(A) = dTi, where Ti is (i-1)-form explicitly given by

Ti =m

∫ 1

0
Tr(B∧Ft

i−1)dtwhere Ft curvature of the connectionAt =A+ tB

Note that Ȧt = d
dtAt. In fact,

Ḟt = dȦt +Ȧt∧At +At∧Ȧt = dB+B∧At +B∧At +At∧B

This implies

Ci(A′)−Ci(A) =
∫ 1

0

d

dt
Ci(At)dt

=
∫ 1

0

∑
Tr(Ft∧Ḟt∧···∧Ft)dt

= i

∫ 1

0

∑
Tr(Ḟt∧Ft

i−1)dt

= i

∫ 1

0

∑
Tr(dB+B∧At +At∧B)∧Ft

We verify this by using the second Bianchi identity, which states that:

d∇Ft = dFt +At∧Ft−Ft∧At = 0

First multiplyting Ft
i−1 and taking the trace to get

Tr(Ft
i−1∧dFt) =−Tr(Ft

i−1∧(At∧Ft−Ft∧At))
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Since we are integrating over dB, so we expand this as

d∇B= dB+At∧B−B∧At

,and rewrite our integral to

Ci(A′)−Ci(A) = i

∫ 1

0

∑
Tr(d∇B∧Ft

i−1)dt

Notice that the exterior derivative commutes with the integration, we find

Ci(A′)−Ci(A) = d

(
i

∫ 1

0

∑
Tr(B∧Ft

i−1)dt
)

Thus, we obtain
Ci(A′)−Ci(A) = dTi

, and hence, we have shown that [Ci(A)]dR is independent of connection ∇ and A. Q.E.D.
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Chapter 4: The Yang-Mills Functional, Its Variations, and The
Yang-Mills Equation

For a general condition, let E →X be a smooth complex vector bundle over a C∞ manifold X ,
equipped with a Hermitian metric Hᾱβ. We also set gij be a C∞ metric on X .

4.1 The Yang Mills Functional
The Yang-Mills functional is the following functional associated with any unitary connection with
respect to the given metric Hᾱβ:

∇→I(∇) =
∫

X
∥F∇∥2

√
gdx (4.1)

defined over all unitary connections ∇ (we could also write as a metric form A). Note that ∥F∇∥2 is
L2 norm of the curvature with the connection ∇ and √gdx is the volume form associated with the
metric g. i.e. Given the connection ∇, we observe the curvature F∇, and clearly, this is a 2-2 form
bilinear space of endomorphism. Since the unitary connection could be written as a metric from A,
we see the curvature F = dA+A∧A be the curvature of ∇. For a disclaimer, this function governs
toward high-energy fundamental laws of nuclear physics. Historically, from a geometric pespective
in 1950s, certain geometries came up with fibre bundles, connections, and curvature, but yet to find
this functional. In fact, as the one understands the Yang-Mills functional and equation, it connects
the mathematics and physics in turn. Now, our interests is in the critical points of this functional,
known as the Yang-Mills Equation.

4.2 Basic Approach - A First Glance
From advanced calculus, we know that critical points are defined as the points where the derivative
of such functional is zero. More generally, a connection ∇ is considered to be a critical point if there
exists no variations that change the value of the functional I(∇). In this sense, the Yang-Mills
equation is the Euler-Lagrange equation for I(∇). For instance, if we take the volume of the
functional, then the critical points would simply give us the minimal area of the submanifold.
In order to derive it, we will apply the following sequence of the variations: (1)variations of the
unitary connection ∇, (2)variations of the curvature, and (3)functional variations. Explicitly, for a
computation wise, we use this:

1. Basic set up: Let the unitary connection 1-form A on a principal vector bundle E →X .
Locally, we can write as A=Akdx

k, where each Ak is generally End(E)-valued function. i.e.
We can see that it takes the values in the endomorphism of the fiber.

2. Curvature F: The curvature 2-form F , denoted Fpq of this connection is given by F = dA+
A∧A. In local coordinates, we have F = 1

2Fjkdx
j∧dxk where Fjk = ∂jAk−∂kAj +[Aj ,Ak].

3. Variation δA: We consider a small perturbation of A, such that, A 7→A+δA, with δA=
δAkdx

k. Our goal now is to compute the resulting variation δA of the curvature.

Proceeding it further, we start from F = dA+A∧A, and the variation is

δF = δ(dA+A∧A) = δ(dA)+δ(A∧A)

13



We inspect each part of this variation. So, by the linearity the exterior derivative d, we have
δ(dA) = d(δA). And since δA= δAkdx

k, we compute:

d(δA) = d(δAkdx
k) = ∂j(δAk)dxj∧dxk,

recall that dxj∧dxk is anti-symmetric, dxj∧dxk =−dxj∧dxk is obvious. Then, often times, we
write

d(δA) = 1
2[∂j(δAk)−∂k(δAj)]dxj∧dxk

Now, for the variation of A∧A, apply the Leibniz’ rule: δ(A∧A) = δA∧A+A∧δA, then

δ(A∧A) = δAkAjdx
k∧dxj +AjδAkdx

j∧dxk

= (δAjAk)−(AjδAk)dxj∧dxk by the anti-symmetry

Combine all to get

δF = δ(dA)+δ(A∧A)
= ∂j(δAk)dxj∧dxk +(δAjAk−AjδAk)dxj∧dxk

By the definition of covariant derivative ∇, we have the 1-form α=αkdxk valued in End(E). This
implies that ∇j(αk) = ∂j(αk)+[Aj ,αk]. Clearly, ∂j(αk) =∇j(αk)− [Aj ,αk]. Then we compute:

∂j(δAk)−∂k(δAj) = [∇j(δAk)− [Aj ,δAk]]− [∇k(δAj)− [Ak,δAj ]]
= [∇j(δAk)−∇k(δAj)]−([Aj ,δAk]− [Ak,δAj ])

,and write covariant expression by explicit anti-symmetrization of the indices (j,k), we get

δF = 1
2
∑
j,k

(∇j(δAj)−∇k(δAj))dxj∧dxk

Or equivalently, since we already know that

d∇(δA) = d∇(δA)kdx
k =∇j(δA)kdx

j∧dxk

= 1
2
∑
j,k

(∇j(δAk)−∇k(δAk))dxj∧dxk

we can express the variation form in the sense of exterior differential of the 1-form:

δF = d∇(δA) (4.2)

In the beginning, we take ∇j(δAk) with resepct to the connection of End(E). But we can also view
this by using the Levi-Civita connection on Λ1(X )⊗End(E), which has torision free: Γm

jk−Γm
kj = 0.

In particular, consider a 1-form Amdx
m, we have

∇j(Ak) = δ(Ak)−Γm
jkAm

, and anti-symmetrizing in (j,k) term does not produce extra torision terms. Then, we get the
variational form on curvature via components

δFkj =∇j(δAk)−∇k(δAj) (4.3)

Since we have shown the variations on the curvature, we are now ready to compute the variation
of the Yang-Mills functional.
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Theorem 4.2.1 (The Yang-Mills equation). Suppose that the connection A is defined by unitary
connection and δF be the curvature variation of the 2-form Fpq. Then the critical points of the
Yang-Mills functional I(∇) is

∇pFpq
α
β = 0 (4.4)

Proof. We claim that the covariant divergence of the curvature is equal to zero. In the process, we
first compute the variation of L2 norm,

δ(∥F∥2) = δF ·F̄+F ·δF̄

= δFjk
α
βFpq

γ
ξHγ̄αH

βξ̄gjpgkq+(c.c) by Leibniz’ rule

= 2(∇jδAk
α
β)Fpq

γ
ξHγ̄αH

βξ̄gjpgkq+(c.c) by curvature variation in components

Note that c.c is the complex conjugate of F ; j,k,p,q be the indices of the base; α,β,γ,ξ be the
indices of the fiber. Explicitly, under a variation δA of the connection, we have the curvature
variation

δFjk
α
β =∇j(δAj

α
β)−∇k(δAj

α
β)

Substitute this into the functional, then our variation for the Yang-Mills functional becomes

δI(∇) = 2
∫

X
(∇jδAk

α
β)Fpq

γ
ξHγ̄αH

βξ̄gjpgkq√gdx+
∫

X
(c.c)dx

By covariant integration by parts, assuming δA= 0 on boundary ∂X , we see that the covariant
derivative ∇j of the Hermitian metric H and the base metric g are constant. Then we observe that
the covariant derivative form lands on the curvature terms, which is∫

X
∇jδAk

α
βFpq

γ
ξ =−

∫
X
δAk

α
β∇j(Fpq

γ
ξ )

Finally, extract the Euler-Lagrange condition

δI(∇) = 0 for all δA (variation of the connection)

this implies
∇j(Fpq

γ
ξ ) = 0 and deduce to get ∇jFjq

α
β = 0

Notice that we have to raise an index via gjp, we arrive to the equation

∇pFpq
α
β = 0 as desired.

Q.E.D.

However, we have restricted the condition of connection A to be unitary. Strictly speaking,
if such arbitrary unitary connection is zero, then it is unclear to get the desired equation. So,
for a rigorous argument, we will introduce the orthonormal frames in order to locally define the
Yang-Mills equation.
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4.3 Rigorous Derivation
We begin by showing the definition of orthonormal frame then develop toward the variation of
connection and curvature. Briefly speaking, the derivation of curvautre by the use of an orthonormal
frame implies uniqueness and existence of the Yang-Mills functional.

Definition 4.3.1. Let ea = {eα
a} be orthonormal frame, equipped with the fixed Hermitian metric

Hᾱβ on complex vector bundle E →X . Then, we have 1)Ex
∼=Cr, for a rank r and x∈X and 2)Hᾱβ

on E is smoothly varying ⟨·,·⟩x on each fiber Ex. So, having the orthonormal condition means, for
each x∈U , where U ∈X is open set, we can express the Hermitian metric in simplest form with
Kronecker delta function. Concretely, this is

Hᾱβe
α

aeβ
b = δab

Now, the following properties are significant result in order to show the variation of the Yang-
Mills functional.

Proposition 4.3.2. Suppose that the connection form A is defined by ∇ea = ecAc
a. Then the

unitary of ∇ implies the connection A is unitary.

Proof. Explicitly, we can define the connection by the covariant derivative ∇jea = ecAj
c
a. i.e. We

want to check the connection, such that how the covariant derivative acts on the frame, and hence
it suffices to what are the coefficients of the section. First, note that Aj

c
a is 1-form valued in the

space of endomorphisms. Now, we alredy know that ⟨ea,eb⟩ = δab (Kronecker delta). Clearly, this
is constant; so, we see the derivative ∂j⟨ea,eb⟩= 0. Then, by the definition of the unitarity, we have

⟨∇jea,eb⟩+⟨ea,∇jeb⟩= 0

Since we already know the explicit connectino form A, our expression is equal to

⟨ecAj
c
a,eb⟩+⟨ea,ecAj

c
b⟩= 0

Factor out by the conjugates of the connection, and remember that we’re dealing with the complex
vector bundle, then

Aj
c
a⟨ec,ea⟩+Aj

c
b⟨ea,ec⟩= 0

Notice that the inner products are Kronecker delta: ⟨ec,eb⟩= δcb and ⟨ea,ec⟩= δac, it follows to get
c= b and a= c. Hence, we find

Aj
b
a =Aj

a
b

and thus, we have shown that if the connection A is unitary, then we must have the relation

A† =−A

This is because, A as a matrix form, then we can take the interchangable adjoint of row/column
indices with Hermitian conjugates. Indeed, for a simple characterization, the matrix form A is
skew-symmetric by the unitarity of the connection. Q.E.D.

Originally, we have seen that the curvature of 2-form is valued in the space of endomorphisms.
Now, we can view End(E) as a space of matrices and check the following property.

Proposition 4.3.3. Suppose now, the curvature F has a unitary connection, equipped with
orthonormal frames. Then F has to be valued via skew-symmetric matrices.
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Proof. The analogue is simple. We first take the adjoint of F and then define through the definition
of the curvature in terms of components. We want to show the unitary connection implies the
relation: F† =−F , with respect to A.

F† = (dA+A∧A)† = {d(Ajdx
j)+Ajdx

j∧Akdx
k}†

= d(Aj
†dxk)+(AjAk)†dxj∧dxk

= d(Aj
†dxj)+Ak

†Aj
†dxj∧dxk by anti-symmetry of A ;so, Aj

† =−Aj andAk
† =−Ak

=−dA−AjAkdx
k∧dxj by renaming indices j↔ k

=−F

Thus, we have shown that the curvature F is a 2-form valued in skew-symmetric matrices. Q.E.D.

Observation 4.3.4. While working with orthonormal frames, we observe that the unitary
conncetion of A and the curvature F is valued in skew-symmetric matrices. In this sense, instead
of keeping the computation by inner products ⟨·,·⟩, we take the advanatge of using traces. Let,
M,N be skew-symmetric matrices. i.e. M † =−M or equivalently, Mα

β =−Mβ
α. Then,

⟨N,M⟩≡Nα
βMα

β =−Nα
βM

β
α =−Tr(NM) =−Tr(MN)

Definition 4.3.5 (The Hodge ∗ operator). Let, φ,ψ be sections of complex vector bundle E →X .
Then the operator ∗ sends a p−form to (n−p)−form (here n= dimX ), such that, ∧∗ recovers
the set of inner product and proportional to the volume. Which is

φ∧∗ψ̄= ⟨φ,ψ⟩√gdx, for any φ,ψ ∈Γ(X ,Λp)

Next, by using the proofs of two propositions above and applying the definition of the Hodge ∗
operator, we can rephrase the Yang-Mills functional and directly show the variation. From there,
we can derive the Yang-Mills equation.

Theorem 4.3.6 (The Yang-Mills functional and its variation). Initially, we have seen the Yang-
Mills functional as

I(∇) =
∫

X
∥F∥2√gdx

Then we rewrite this functional to

I(∇) =−
∫

X
Tr(F ∧∗F) (4.5)

This implies that the varition of I becomes

δI(∇) = 2⟨δA,d†
∇F⟩ (4.6)

Proof. In basic interpretation, we already know that the curvature F is 2-form valued in End(E).
Then, by the definition 4.3.5, we see that

∥F∥2√gdx= ⟨F ,F⟩√gdx=F ∧∗F

Since F is skew symmetric, and by the observation 4.3.4, which we have seen already,

⟨F ,F⟩=Tr(F†F) =Tr((−F)F) =−Tr(F2)
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Hence, this allows to reformulate the functional as∫
X
∥F∥2√gdx=

∫
X
⟨F ,F⟩√gdx=−

∫
X
Tr(F2)√gdx=−

∫
X
Tr(F ∧∗F)

Next, we compute the variation formula.

δI(∇) =−2
∫

X
Tr(δF ∧∗F+F ∧∗δF) by Leibniz’ rule

=−2
∫

X
Tr(δF ∧∗F) by symmetry of wedge and commutativity of trace

=−2
∫

X
Tr(d∇(δA)∧∗F) by equation (4.2)

Here, notice that both δA and F are both skew-symmetric, we find

⟨d∇(δA),F⟩= ⟨δA,d†
∇F⟩=−

∫
X
Tr(d∇(δA)∧∗F)

Thus, we have shown the variation of the Yang-Mill functional

δI(∇) = 2⟨δA,d†
∇F⟩

Q.E.D.

Proposition 4.3.7 (Explicit forms of the covariant differential d†
∇). Let M,N be 1-form and 2-form

valued in skew-symmetric matrices, respectively. Then,

1. (The Hodge ∗ operator) d†
∇ = (−1)n−1 ∗d∇∗

2. (Express in terms of components) (d†
∇N)q =−∇jNjq

Proof. We view this through traces and observe first that d∇ is 1-form.

Tr(d∇M ∧∗N) =Tr(d∇(M ∧∗N))+Tr(M ∧d∇ ∗N)
= d{Tr(M ∧∗N)}+Tr(M ∧d∇N)

Here, we integrate by parts using Stokes’ theorem. Which means, in a differential form, if we have
φ be p−1-form and ψ be p-form, then

∫
Xφ∧∗(dψ) =

∫
X⟨φ,dψ⟩

√
gdx. Recall the Stokes’ theorem,∫

X⟨φ,dψ⟩
√
gdx=−

∫
X⟨φ,d†ψ⟩√gdx, where d† is the formal adjoint of exterior derivative d. Then,

as going back to the computation, we find
∫

X d{Tr(M ∧∗N)}= 0 since the boundary term vanishes.
This gives the expression

⟨d∇M,N⟩=−
∫

X
Tr(d∇M ∧∗N) =−

∫
X
Tr(M ∧d∇ ∗N)

So, we are only left to identify the adjoint d†
∇. Now, from a basic Hodge theory, if we have p-form

section φ on n= dim(X ), then the operator ∗ satisfies ∗∗φ= (−1)p(n−p)φ. So, in our case, where
M is 1-form, ∗∗= (−1)n−1 is clear. Then,

−
∫

X
Tr(M ∧d∇ ∗N) =−(−1)n−1

∫
X
M ∧∗(∗d∇∗)N

Observe that ∧∗ is the inner product as we have seen already, we get

−
∫

X
Tr(M ∧d∇ ∗N) = (−1)n−1⟨M,∗d∇ ∗N⟩

18



Hence, we have shown the first part of the proposition. Next, for 2, we express d†
∇ by components.

From our basic set up, where M is 1-form and N is 2-form, we take

d∇M =
∑
j,k

(∇jMk)dxj∧dxk and N = 1
2
∑
j,k

Nkjdx
j∧dxk

Knowing that (d∇M)jk =∇jMk−∇kMj and Npq is skew-symmetric, we contract the indices:

Tr((d∇M)jkNpq)gjpgkq =Tr(∇k(MkN
jk))−Tr(Mj∇kN

jk) =−Tr(∇kMj)N jk

where, N jk = gjpgkqNpq. The inner product is now

⟨d∇M,N⟩=−
∫

X
Tr(d∇M)jkNpqg

jpgkq√gdx=−
∫

X
Tr(∇kMj)N jk√gdx

=−
∫

X
∇kTr(MjN

jk)−Tr(Mj∇kN
jk)√gdx

Then, integrating by divergence theorem, in particular by the lemma 4.3.8, it is clear to see that
Tr(MjN

jk) of
∫

X∇kTr(MjN
jk) is a vector form. Hence, the whole term vanishes, and thus, the

inner product formula reduces to ⟨d∇M,N⟩=
∫

X Tr(Mj∇kN
jk)√gdx. In fact, this implies that the

adjoint of the exterior differential is now

(d†
∇N)q =−∇jNjq

Q.E.D.

Lemma 4.3.8. For any vector field vj, we have∫
X

(∇jv
j)√gdx= 0

Proof. By the definition of Levi-Civita connection, the divergence of the vector field is

∇jv
j = ∂jv

j +Γj
jkv

k

Indeed, the property of Levi-Civita connection tells us ∇kgij = 0, and this yields to ∇j
√
g= 0.

Then, by the divergence theorem(or equivalently, Stokes’ theorem)∫
X

(∇jv
j)√gdx=

∫
X
∂jv

j√gdx=
∫

∂X

√
gvjnjds= 0

Since the boundary vanishes, we have shown that
∫

X(∇jv
j)√gdx= 0 Q.E.D.

Theorem 4.3.9 (The Yang-Mills equation). For a variation δI(∇) and the unitary of A, the
critical points of the functional I(∇) is the Yang-Mills equation

d†
∇F = 0 (4.7)

Proof. Notice first that since both δA and A are unitary, we have δI(∇) = 0 for all δA. By
proposition 4.3.2, it is clear that both δA and A are skew-symmetric. However, from the
equation(4.6), what we want is ⟨δA,d†

∇F⟩= 0 for all δA and F be both skew-symmetric. In
particular, by proposition 4.3.3, we know that F is skew-symmeric and so as to d†

∇F . Finally,
since d†

∇F is orthogonal to all variation δA, we conclude to get d†
∇F = 0 as desired. Another

way to prove the Yang-Mills equation is followed by the second part of proposition 4.3.7. From
(d†

∇N)q =−∇jNjq where N is a 2-form, we apply this to the curvature Fjq
α
β , which is also a 2-form.

Then, the divergence of the curvature: ∇jFjq
α
β = d†

∇F = 0 is the Yang-Mills equation. Q.E.D.
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Chapter 5: Examples and Solutions of The Yang-Mills Equation

In this chapter, we inspect the examples and solutions of the Yang-Mills equation.

5.1 The Maxwell’s Equation
From our rigorous approach in previous section, in particular, followed by the result of the
proposition 4.3.7 and theorem 4.3.9 , (d†

∇N)q =−∇jNjq is absolutely powerful and elegant way
of recapturing the base case of the equations of the electromagnetism. In general physics, such
equations that describe the interaction between electricity and magnetic fields, arising from their
charges and currents, are the famous Maxwell’s equation. Precisely, the classical Maxwell’s equation
consists of four distinct different partial differential equations, and these are the Gauss’s law
of electricity, the Gauss’s law of magnetism, the Maxwell-Faraday’s law of induction, and the
Maxwell-Ampére’s law.

Definition 5.1.1. Let E be electric fields, B be magnetic fields and ρ,σ represent the charge and
current densitites, respectively. Then we state the Maxwell’s equation:

∇· E⃗= ρ (5.1)

∇·B⃗= 0 (5.2)
∇× E⃗+∂tB⃗= 0 (5.3)
∇×B⃗−∂tE⃗=σ (5.4)

In the process of illustrating the formalism, we apply U(1) Yang-Mills theory on Minkowski
spacetime R1,3 of 4-dimensional Riemmanian manifolds. This means, we view t=x0 as the time
coordinate and x⃗=xj for 1≤ j≤ 3 as the spatial coordinates, where the Lorentz metric is given by

ds2 = dt2−
3∑

j=1

(
dxj

)2

Remark 5.1.2. U(1) is the simplest form of a Yang-Mills field. It is abelian, compact, and connected;
significantly, it associates with a vector bundle whose fibers are 1-dimensional complex vector
spaces, which is clearly a complex line bundle (cf. §2.1). So, it provides a geometrically perfect
setting for describing electromagnetism.

Definition 5.1.3. The connection A is a 1-form. We can express it as in a vector form

A=
3∑

j=0
Ajdx

j =−φdt+
3∑

j=1
Ajdx

j

Here, −φdt is the scalar potential and the remaining sum is the vector potential part of A.

Definition 5.1.4. Since our connection A is a scalar (i.e. abelian), it is obvious to see A∧A= 0.
Then, we define the curvature F as follows

F = dA+dA∧A= dA

= 1
2

3∑
j,k=0

(∂jAk−∂kAj)dxj∧dxk = 1
2Fkjdx

j∧dxk
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In fact, in physics literature, such definition of the curvature 2-form

Fkj = 1
2

(
∂Ak

∂xj
− ∂Aj

∂xk

)
is referred to as the field strength of the U(1) Yang-Mills field (i.e. Gauge field). Note that since
Fjk is antisymmetric, there is no curvature component for F(0,0) as dx0∧dx0 = 0.

Definition 5.1.5. Using the definition of the curvature 2-form F , we can show the electric and
magnetic field. The electric field E⃗= (E1,E2,E3) is given by time-space components of the curvature

Ej =Fj0 for j= 1,2,3

If j ̸= k, then the magnetic field B⃗= (B1,B2,B3) is defined through space components. So, for each
j= 1,2,3, let

Bj =Fkl , where (j,k,l) is a cyclic permutation of (1,2,3)

We can represent this in 4×4 matrix of the 2-form curvature Fkj , where the first row and column
be the electric field and the rest of antisymmetric terms be the magnetic field, which means,

Fkj =


0 −E1 −E2 −E3
E1 0 −B3 B2
E2 B3 0 −B1
E3 −B2 B1 0

since Ej =Fj0,−Ej =F0j and F12 =B3, F23 =B1, F13 =B2

Now, we have recognized the fact that these physical notions are purely components of the
curvature. Then, we are now ready to show the Maxwell’s equation with respect to the framework
of the Yang-Mills equation.

Theorem 5.1.6. The Maxwell’s equation provides a characterization of the electromagnetism. In
particular, from the U(1) Yang-Mills theory, the homogenous Maxwell’s equation can be derived
from the Second Bianchi Identity and the inhomogenous Maxwell’s equation follwed by the adjoint
of the exterior differential of the curvature.

Proof. We show this by considering the simplest condition: the Maxwell’s equation in a vacuum
state, where the charge and current densities, ρ and σ, vanish from the equations (5.1) and (5.4).
Recall from the definition 3.1.1. and since U(1) is abelian, the Second Bianchi Identity is dF = 0.
Geometrically, the homogenous equation has no charges and currents, and since the curvautre F
is a closed 2-form, it naturally arises from the Second Bianchi Identity. Applying this into the
Maxwell’s equation, which is equivalent to say in componentwise

∂lFkj +∂kFjl +∂jFlk = 0

For the one case, if none of the indices, j,k,l is zero (i.e. all the indices are space components), then
we can rewrite this as the divergence of the magnetic field by the antisymmetry of Fkj. Hence, we
have shown the equation (5.2)

∇·B⃗= 0

The other case is that whenever one of the indices j,k,l is zero. Without loss of generality, if we
set l= 0, then the remaining indices, j,k, must be defined via space components. For instance, we
can take the case when k= 1 and j= 2 for l= 0. Then the Second Bianchi Identity becomes

∂tF12 +∂1F20 +∂2F01 = 0
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Followed by the definition 5.1.5, which is now

∂tB3 +∂1E2−∂2E1 = 0

Putthing altogether, and repeating this procedure by the cyclic permutation of indinces, we can
rewrite this as the curl of the electric field; so, we have shown the equation (5.3)

∂tB⃗+∇×E⃗= 0

For the remaining two equations, it is followed by the theorem 4.3.9 and the unitarity of the
connection A. Then we observe the Yang-Mills equation takes the form

d†
∇F = 0⇐⇒ ∂0F0k−

3∑
j=1

∂jFjk = 0

, where the Minkowski metric(i.e. base metric) is diagonal. Which means, gjq = gjq = 1 for j= q= 0
and −1 for 1≤ j= q≤ 3. Then we consider two cases. For k= 0, then it is clear to see ∂0F0k = 0;
consequently,

−
3∑

j=1
∂jFjk =−∇· E⃗= 0

Hence, the above equation is now the divergence of the electric field; thus, the Gauss’s law of
electricity (5.1) in vacuum state becomes

∇· E⃗= 0 (5.5)

Next, for k ̸= 0, which refers that k∈{1,2,3}, and again, by the antisymmetry,

Fk0 =Ek and F0k =−Ek; so, ∂0F0k = ∂0(−Ek) =−∂tEk

i.e. the first term becomes the time derivative of electric field. The remaining part, −
∑3

j=1∂jFjk,
transforms to the curl of the magnetic field, and this is easily observed by the 4×4 matrix in the
definition 5.1.5. Thus, the Maxwell-Ampére’s law (5.4) in vacuum state is now

∇×B⃗−∂tE⃗= 0 (5.6)

To conclude, we have shown that the U(1)Yang-Mills theory generalizes and recovers the Maxwell’s
equation. Q.E.D.

5.2 Self-Dual and Anti Self-Dual Solutions
These solutions are notably famous and simple case in topology. In fact, it is a special condition
when our base manifold is a 4-dimensional Riemmanian manifold.

Proposition 5.2.1. Let X be a 4-dimensional Riemmanian manifold equipped with the metric g.
Then the Hodge star operator ∗ is a self adjoint, and consequently, we may decompose the 2-form,
denoted Λ2(X ), into orthogonal direct sum as follows

Λ2(X ) = Λ2
+(X )

⊕
Λ2

−(X )

, where Λ2
±(X ) be the eigenspace of ∗ with eigenvalues ±1.
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Proof. Followed by the definition 4.3.5, the Hodge star operator ∗ maps p-form to n−p-form.
Which means,

∗ : Λp→Λn−p so if p= 2,n= 4, then ∗ : Λ2→Λ2

Now, again by the definition, we wish show the identity of the Hodge ∗ operator, such that,
φ∧∗ψ= ⟨φ,ψ⟩√gdx, where √gdx is the Riemmanian volume form and φ,ψ be any real-valued
2-form. We compute

⟨∗φ,ψ⟩√gdx= (∗φ)∧(∗ψ) = (∗ψ)∧(∗φ) = ⟨∗ψ,φ⟩√gdx= ⟨φ,∗ψ⟩√gdx

and since √gdx ̸= 0, we have shown
⟨∗φ,ψ⟩= ⟨φ,∗ψ⟩

so that ∗ is clearly a self adjoint on Λ2(X ). Next, since our case is when p= 2 and n= 4, we find

∗∗= (−1)(p)·(n−p) = (−1)2·2 = 1

Hence, ∗2 = 1, and the eigenvalues of ∗ have to be ±1. So, the self adjoint operator ∗ can be
diagonalizable, and its eigenspaces are the self-dual and the anti self-dual of 2-forms, respectively

Λ2
+(X ) = {φ∈Λ2(X )|∗φ=φ} and Λ2

−(X ) = {φ∈Λ2(X )|∗φ=−φ}

Notice that these two eigenspaces are pointwise orthogonal and span all of Λ2(X ); thus, yielding
toward the decomposition as

Λ2(X ) = Λ2
+(X )

⊕
Λ2

−(X )

Q.E.D.

Proposition 5.2.2. Let F be any 2-form curvature of a connection A on a complex vector bundle
E →X , where X is a smooth 4-dimensional Riemmanian manifold. Then, applying the self-dual
and anti self-dual decomposition of the curvature, the Second Chern-class is topologically invariant.

Proof. By the same analogue from previous proposition, the 2-form curvature F decomposes as
follows

Fa
b = (F+)a

b +(F−)a
b ,where (F±)a

b ∈Λ2
±(X )⊗End(E)

Then, recall from the chapter 3, especially focusing on the Chern-Weil theory, we see the second
characteristic class

C2(E) =Tr(F ∧F)

Since our connection is independent, we may choose any. Then we compute the decomposition

Tr(F ∧F) = (F+ +F−)a
b∧(F+ +F−)b

a

= (F+)a
b∧(F+)b

a +(F−)a
b∧(F−)b

a +(F+)a
b∧(F−)b

a +(F−)a
b∧(F+)b

a

and by the Hodge∗ identities, such that, ∗F+ =F+ and ∗F− =−F ,
= (F+)a

b∧∗(F+)b
a−(F−)a

b∧∗(F−)b
a

It followed from the fact that each F+ and F− has +1,−1 eigenvalue, respectively, and their
eigenspaces Λ±(X ) are mutually orthogonal to each other; hence, the cross terms vanish.
i.e.(F+)a

b∧∗(F−)c
d = 0. Also, it is clear to see

(F+)a
b∧∗(F+)b

a = ∥F+∥2 ,and so as to (F−)a
b∧∗(F−)b

a = ∥F−∥2
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Putting altogether and integrating over X , we obtain the Chern class∫
X
C2(E) =

∫
X
Tr(F ∧F) =

∫
X

(F±)a
b∧∗(F±)b

a

= ∥F+∥2L2−∥F−∥2L2

This is in fact the second Chern-class which is topologically invariant as it remains unchanged
under continuous decomposition. Q.E.D.

Now, we are going back to the Yang-Mills functional and deriving the solutions.

Theorem 5.2.3. From 4-dimensional Riemmanian manifold X , we have a connection A over
complex vector bundle E →X , with 2-form curvature decomposed as Fa

b = (F+)a
b +(F−)a

b. Then,
the Yang-Mills functional is the lower bound of the second Chern-class and the equality holds if and
only if F− = 0 or F+ = 0. These are the self-dual and anti self-dual solutions of the functional.

Proof. The proof immediately follows by the proposition 5.2.2. and the equation(4.1) the definition
of the Yang-Mills functional. Since we already know the decomposition of the 2-form curvature
with ∗F± =±F±, we can express the functional as follows

A→I(A) =
∫

X
∥FA∥2

√
gdx=

∫
X

(
∥F+∥2 +∥F−∥2

)√
gdx

We also know that ∥FA∥2 is L2 norm of the curvature with connection A associated with the
volume form √gdx, so we can conveniently rewrite as

I(A) = ∥F+∥2L2 +∥F−∥2L2

Then, using the result of the proposition above, the second Chern-class tells us the inequality

I(A) = ∥F+∥2L2 +∥F−∥2L2 ≥ | ∥F+∥2L2−∥F−∥2L2 |= |
∫

X
C2(E)|

Hence, we have shown that the Yang-Mills functional is bounded below by the second Chern-class.
Observe that whenever the lower bound is saturated, so that either components of the second
Chern-class goes to zero. i.e.We must have either ∥F+∥2L2 = 0 or ∥F−∥2L2 . Then, we have two
cases to consider. If F− = 0, then F =F+ which satisfies F = ∗F , the connection is self-dual. If
F+ = 0, then F =F−, satisying the connection to be anti self-dual since F =−∗F . Which means,
we have found that the minima of the Yang-Mills functional given by the connections. Therefore,
the critical points of this functional, which are solutions of the Yang-Mills equation are defined
through the connections of self-dual and anti self-dual. Q.E.D.

5.3 The Belavin-Polyakov-Schwartz-Tyuptin Instantons
In 1975, theoretical physicists, Belavin, Polyakov, Schwartz, and Tyuptin showed a pseudoparticle
solutions of the Yang-Mills equation; in a simpler term, we call it the BPST-instantons [1]. In fact,
it is well known as a classical solution to SU(2) Yang-Mills theory in euclidean R4 space.

Definition 5.3.1. The definition of pseudoparticle solution is that in R4 euclidean space, the
Yang-Mills functional I(A) minimized locally by the connection(i.e.long-range fields) A. Precisely,
recall from the chapter 4 on the Yang-Mills functional, we can express this as follows

I(A) =
∫

X =R4
∥F∥2√gdx<∞ which is finite
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For a better understanding, we consider S3⊂R4 as the basic case. The BPST-instantons tells us
that for a connection A, the curvature satisfies the pointwise dacay as reaching near the boundary
of S3. This means, we have ∥F∥→ 0 as |x|→∞;so, for a gauge transformation, we have a smooth
map g :S3

∞→SU(2), defined through asymptotical 1-form connection A, such that,

Aj ≈ g−1(x)∂g(x)
∂xj

for sufficiently large x ,where g(x) are matric form of SU(2)

We compute the curvature, followed by the usual definition in section(2.3),

F = dA+A∧A= g−1d(gdg−1) = g−1dg∧dg−1 = 0

In order to find the abolute minumum of the phase in componentwise, we apply characterization,
and that is the Second Chern-class in R4 given by normalization

C2(E) = 1
8π2

∫
R4
Tr(F ∧F)

Since C2(E) = k is the integer, we claim this to be the instanton number, such that, the topological
charge k= 1. Now, for a self-duality, we already know that F = ∗F . Then by the equation(4.5), we
can rewrite the functional as

I(A) =
∫

X =R4
∥F∥2√gdx=

∫
R4
Tr(F ∧∗F) =

∫
R4
Tr(F ∧F)

Finally, by our assumtion, we have reached the solution

I(A) =
∫
R4
Tr(F ∧F) = 8π2C2(E) = 8π2

Indeed, from the result of previous section, we can see this as I(A)≥ |
∫

XC2(E)|. Hence, the abolute
minumum is when the equality holds for 8π2, which represents the BPST-instantons.
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Chapter 6: The Yang-Mills Equation on Kähler Geometry

Previously, we have seen the Yang-Mills equation in arbitrary smooth complex vector bundles. This
is absolutely complicated based on the results above. We now assume that such smooth bundles are
holomorphic so that we can derive the equation in a much simpler case. In fact, the holomorphicity
has more structure, and the result would be extremely beautiful. In the process, we consider the
condition of a smooth vector bundle, E →X to be a holomorphic vector bundle over a Kähler
manifold, denoted (X ,ωX ).

6.1 Properties of Kähler Manifolds
The analogue followed by the chapter 2, where we have demonstrated the notions of vector bunldes,
connections, and curvature. Since we already know how to treat curvatures and connections on
Hermitian holomorphic bundles E →X , eqiupped with Hermitian metric Hᾱβ, the important case
to see in particular is when X is a complex manifold, and E =T 1,0 be the space of (1,0)-form vector
fields on X . We begin by showing basic definitions.

Definition 6.1.1. We retrieve from the definition of complex vector bundles, such that E = Λ1,0

be the bundle defined through the space of (1,0)-from on X . In a local coordiate system,

zµ
l for 1≤ l≤ dim(X ) =n, the smooth sections φ=

n∑
l=1

dzµ
lφl,µ.

For a different coordiate system, we have

dzµ
lφl,µ =φ= dzν

mφm,ν , and this implies φl,µ = ∂zν
m

∂zµ
l
φm,ν .

Clearly, E = Λ1,0 is defined by the holomorphic transition functions: ∂zν
m

∂zµ
l . Now, the holomorphic

tangent bundle, denoted T 1,0, is locally the dual bundle to E = Λ1,0. This means, T 1,0 has sections
V =Vµ

l ∂
∂zµ

l , and the transition functions are given by Vµ
l = ∂zν

m

∂zµ
l Vν

m. Then, we take the vector
bundles of the vector fields and obtain a tangent bundle

E =T (1,0)X = {V =V l ∂

∂zl
}

For a notational consistency, we set Γ(X ,T 1,0)∋V =V l be the smooth sections of tangent
bundles (formerly, it was φα); gl̄m be the Hermitian metric of a tangent bundle; Rk̄l

p
q be its

curvature. In fact, there exists a lot of possibilities that such identities for the curvature of a
tangent bundle would not make sense for the curvature of a general holomorphic vector bundle; we
must introduce the Kähler metrics in turn.

Definition 6.1.2. Given a metric gl̄m of a tangent bundle T 1,0, we associate the following (1,1)-form
by ω= igl̄mdz

m∧dz̄l. The metric gl̄m is said to be Kähler, if dω= 0, where ω is closed in global
condition. Or, explicitly, we can express this in local coordinates

∂

∂zp
gl̄m = ∂

∂zm
gl̄p and ∂

∂z̄p
gl̄m = ∂

∂z̄l
gp̄m
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Computing via dω= 0, we can expand it as
∂gl̄m

∂zp
dzp∧dzm∧dz̄l + ∂gl̄m

∂z̄p
dz̄p∧dzm∧dz̄l = 0

Notice the symmetry, we can also view the Kähler potential locally for some smooth function ψ,

gl̄m = ∂2ψ

∂zm∂z̄l

Definition 6.1.3. Putting definitions 6.1.1. and 6.1.2. altogether, a complex manifold X , equipped
with a Hermitian metric gl̄m on its tangent bundle T 1,0, is called a Kähler manifold if the associated
(1,1)-form (the Kähler form)

ω= igl̄mdz
m∧dz̄l

is closed. i.e. dω= 0.
We can now derive the identities for the curvature of the Kähler metrics.

Proposition 6.1.4. Let X be a Kähler manifold having the metric gp̄m. We define the curvature
tensor locally by lowering the indices as follows:

Rk̄jp̄q = (Rk̄j
m
q

)gp̄m

Then, the curvature tensor satisfies the characteristic conditions of symmetry, such that,

Rk̄jp̄q =Rp̄jk̄q =Rp̄qk̄j

i.e. We can freely permute anti-holomorphic indices k̄,p̄ and holomorphic indices j,q, which is only
true for Kähler metrics.

Proof. Recall the Chern-connection ∇ of vector bundles, we already know

∇l̄φ= ∂l̄φ
α and

∇lφ
α =Hαβ̄∂l(Hβ̄αφ

α) = ∂lφ
α +(Hαβ̄∂lHβ̄γ)φγ by Leibniz’ rule.

In a metrix notation, where Al =H−1∂lH, so that ∇l = ∂l +Al, and we see Hαβ̄∂lHβ̄γ =Aα
lγ; so,

A= ∂z
l(H−1∂lH)α

γ . For a curvature, where Fm̄l = [∇m̄,∇l] =−∂m̄Al, and locally this is

Fm̄l
α
γ =−∂m̄Al

α
γ =−∂m̄(H−1∂lH)α

γ

Then, applying this convention to the tangent bundles, we find

Rm̄l
p
q =−∂m̄(gpr̄∂lgr̄q) = gpt̄(∂m̄gt̄s)gsr̄∂lgr̄q−gpr̄∂m̄∂lgr̄q

Finally, lowering the indices, which is (1,1)-form valued in End(T 1,0),

Rm̄lūq = gūpRm̄l
p
q = gūp{gpt̄(∂m̄gt̄s)gsr̄∂lgr̄q−gpr̄∂m̄∂lgr̄q}

= ∂m̄gūsg
sr̄∂lgr̄q−∂m̄∂lgūq

Since ∂m̄gūs = ∂ūgm̄s, we obtain the desired identity: Rm̄lūq =−∂m̄∂lgūq. Observe now that the
partial derivatives are commutative and gūq = gq̄v, we easily find

Rm̄lūq =Rūlm̄q (permute m̄↔ ū) and Rm̄lūq =Rm̄qūl (permute l↔ q)

Thus, we have shown the Kähler symmetries of the curvature tensor

Rk̄jp̄q =Rp̄jk̄q =Rp̄qk̄j

Q.E.D.
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Now, we can also show the Ricci curvature. It is defined as (1,1)-form, such that, for all ω be
Kähler,

Ric(ω) = idzj∧dz̄kRk̄j
m
m

, where Rk̄j obtained from the trace of the general curvature

The general formual can be easily observable when the metric G is diagonalizable as follows

δ(log det(G)) = δlog(πλj) =
∑

j

δlog λj =
∑ δλj

λj
=Tr(G−1δG)

Then, we see that
Rk̄j =Rk̄j

m
m

=−∂k̄
(
gmr̄∂jgr̄m

)
=−∂K̄∂j (log detgp̄q)

Hence, we find
Ric(ω) = i∂∂̄(log detgp̄q)

Notice that Ric(ω) is closed and we recognize the fact that the first Chern-class is a de Rham
cohomology class of Ricci curvature; i.e.we set C1(E) = [Ric(ω)]dR. So with E =T 1,0, and since
Rk̄j

p
p

=TrF where F =Rk̄j
p
q
, we observe C1(X ) = iC1(E).

6.2 The Hermitian-Einstein Equation
Understanding the key feature of Kähler manifolds, we introduce Hermitian-Einstein equation.
Though, we won’t show fully explicit proof since the stability is not our goal.

Definition 6.2.1. Let E →X be an irreducible holomorphic vector bundle over a compact Kähler
manifold(definition 6.1.3). Then we fix a reference metric on E , denoted Ĥᾱβ. For another given
Hermitian metric Hᾱβ on E , we define its corresponding endomorphism, denoted Hα

β = Ĥαγ̄Hγ̄β .
Express this in matrix form, H= Ĥ−1H. Then we show the Hermitian-Einstein equation as follows

gjk̄ (Fϵ)k̄j

α

β
−µδα

β =−ϵ(logHϵ)α
β (6.1)

Again, in matrix, note that Fϵ is the curvature of (Hᾱβ)ϵ,

ΛFϵ−µI = ϵ logHϵ (6.2)

From our endomorphism H above, we let Hϵ = Ĥ−1Hϵ be the solution of the Hermitian-Einstein
equation for any 0<ϵ< 1.

6.3 The Yang-Mills Equation on Compact Kähler Manifolds
Stretching from the last two sections, where we have learned about Kähler manifolds and the
Hermitian-Einstein equation, we are now ready to present our goal of this chapter. Let us begin
by showing the definition of compact Kähler manifold, denoted (X ,ωX ).

Definition 6.3.1. A compact Kähler manifold is a n-dimensional complex manifold X that is
compact as a topological space and equipped with a fixed holomorphic tangent bundle, T 1,0X
associated with the Kähler form (i.e. (1,1)-form), such that, ω= igk̄jdz

j∧dz̄k is closed. Note that
the compactness simply means that the every open cover of X has a finite subcover. Such examples
of compact Kähler manifolds are complex projective space: CPn and Calabi-Yau manifolds.

Definition 6.3.2. Let X be a compact Kähler manifold. A holomorphic vector bundle over a
compact Kähler manifold, E →X , is a vector bundle associated with a fixed Hermitian metric Hᾱβ

and a base metric ω= igk̄jdz
j∧dz̄k ,which is Kähler.
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Recall that from chapter 4, we have seen that the Yang-Mills equation is ∇pFpq
α
β = 0, for a

unitary connection A with its curvature F . Then we first claim that such equation is integrable,
since our base manifold is a Kähler manifold.

Definition 6.3.3. A connection A is integrable if its curvature is a (1,1)-form valued in End(E).

Now, from chapter 3 on characteristic classes, any curvature satisfies the Second Bianchi
Identity. To to this, we will introduce useful basic lemma and theorem.

Lemma 6.3.4. Suppose that the curvature F is a (1,1)-form. Then the connection A equipps with
a vector bundle, E →X , having the holomorphic structure, where holomorphic sections are defined
by ∇k̄φ

α = 0 with 1≤ k≤ rank(E).

Proof. On a complex manifold X , it is clear that each 1-from, Λ1, decomposes into (1,0) and
(0,1) forms. Then we can write our connection A=A1,0 +A0,1. Explicitly, by the definition of
Chern-Unitary connection:

∇kφ
α =Hαβ̄∂k(Hβ̄γφ

γ) and ∇k̄φ
α ∈Γ(X ,E ⊗Λ0,1)

∇k̄ is a connection of (0,1)-form. Also, we alredy know that for the curvature of 2-form valued
in End(E) is F = dA+A∧A=F2,0 +F1,1 +F0,2. Then, by assumption, F is 1-1 form, which
implies F0,2 = 0. This follows that (∇k̄)2 = 0. Specifically, such holomorphic sections of E can be
characterized by ∇k̄φ

α = 0 for all k̄ and α. Hence, by the definition 6.3.3. and our observation, we
have shown that the connection ∇k̄ of (0,1)-form is said to be integrable is (∇k̄)2 = 0. Q.E.D.

We can expand this lemma to the following theorem.

Theorem 6.3.5. If the curvature F is a (1,1)-form, then there exists enough holomorphic sections
in order to trivialize the vector bundle, and hence indeed the bundle itself is a holomorphic vector
bundle.

Proof. The proof immediately follows from the definition 2.1.3. and the lemma 6.3.4. Since we have
the curvature F of (1,1)-form, we can consturct local holomorphic frams {φ1,...,φr} for rank(E),
in which satisfies the integrability ∇k̄φ

α = 0. Q.E.D.

Now, we will apply the lemma 6.3.4. and the theorem 6.3.5. to demonstrate the Second Bianchi
Identity on Kähler manifolds.

Theorem 6.3.6. Let X be a compact Kähler manifold. Suppose that E →X be a smooth complex
vector bundle, A be the connection on E, and F be its curvature. Then the Second Bianchi Identity
holds:

dAF = 0

Proof. We have two versions. The first one is very directforward, followed by definition 3.1.1. We
expand the identity dAF = 0 explicitly as ∇F = 0, where ∇ is the covariant derivative on End(E)

dA(1
2
∑
j,k

Fkjdx
j∧dxk) = 1

2
∑
j,k,l

∇lFkjdx
l∧dxj∧dxk = 0

However, this is not convenient to use as we have just applied the expansion. Since X is a Kähler
manifold, we can see the curvature F is indeed a (1,1)-form. So, by the lemma 6.3.4. above, in
holomorphic coordinates zj for X , where F =

∑
j,kFk̄jdz

j∧dz̄k, such equation simplifies to

dA(Fk̄jdz
j∧dz̄k) =∇mFk̄jdz

m∧dzj∧dz̄k +∇m̄Fk̄jdz̄
m∧dzj∧dz̄k = 0
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This means, we can differentiate m and m̄ directions for the covariant derivatives. In fact, since
our situation is in complex case, each form is not commutative. We observe that the first part:
dzm∧dzj∧dz̄k is a (2,1)-form and the second part: dz̄m∧dzj∧dz̄k is a (1,2)-form. Then we find
each part must be zero, which is now∑

∇mFk̄jdz
m∧dzj∧dz̄k = 0 and

∑
∇m̄Fk̄jdz̄

m∧dzj∧dz̄k = 0

By the antisymmetrization, we have shown the Second Bianchi Identity in Kähler manifolds

∇mFk̄j−∇jFk̄m = 0 and ∇m̄Fk̄j−∇k̄Fm̄j = 0

where ∇ is the connection valued on End(E). Q.E.D.

Next, we show another version of the proof, which is more advanced. We use the result of the
theorem 6.3.5 in which the holomorphic trivialization ensures the Second Bianchi Identity.

Proof. Let us denote D be the new connection, acting on Λ1,0⊗End(E). i.e. We take the connection
∇ on End(E), together with the Chern-unitary connection on Λ1,0, given by Γp

mq = gpr̄∂mgr̄q. Then,
we show the relations including indices of the curvature F and End(E):

DmFk̄j
α
β

=∇mFk̄j
α
β
−Fk̄p

α
β
Γp

mj and Dm̄Fk̄j
α
β

=∇m̄Fk̄j
α
β
−Fk̄q

α
β
Γq

m̄j

Now, we can express the Second Bianchi Identity in terms of D in both m and m̄ directions:

DmFk̄j
α
β
−DjFk̄m

α
β−Fk̄p

α
β
Γp

mj +Fk̄p
α
β
Γp

jm = 0 by the antisymmetry of F ( swap m↔ j)

and similarly,

Dm̄Fk̄j
α
β
−Dk̄Fm̄j

α
β−Fk̄q

α
β
Γq

m̄j +Fk̄q
α
β
Γq

jm̄ = 0 again, by the antisymmetry,
(
swap m̄↔ k̄

)
Notice that the last two terms of the equations are −Fk̄p

α
β

(
Γp

mj−Γp
jm

)
and −Fk̄q

α
β

(
Γq

m̄j−Γq
jm̄

)
.

Since our base metric gk̄j is Kähler, the connection is clearly torision free. Which implies Γp
mj = Γp

jm

and Γq
m̄j = Γq

jm̄; hence, each term vanishes. Thus, the Second Bianchi Identity becomes:

DmFk̄j
α
β

=DjFk̄m
α
β and Dm̄Fk̄j

α
β

=Dk̄Fm̄j
α
β

Q.E.D.

By understanding the Second Bianchi Identity on compact Kähler manifolds, we are now ready
to derive the integration of the Yang-Mills equation.

Theorem 6.3.7. The Yang-Mills equation on holomorphic vector bundles over compact Kähler
maniolfds reduces to Hermitian-Einstein equation.

Proof. Recall that we have the Yang-Mills equation

∇pFpq
α
β = 0 (6.3)

Suppose that E →X is holomorphic vector bundles and (X ,ωX ) is Kähler with zj be holomorphic
coordinates for the basis of X . Then we can permute indices p and j followed by the result of the
proposition 6.1.4. So, the equation splits into

∇k̄Fk̄j
α
β

= 0 and ∇kFj̄k
α
β

= 0
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This is because, our curvature F is a (1,1)-form, whose only non-zero components are Fk̄j
α
β
. i.e.

we can contract k and k̄. Which implies, for ∇k̄, we can differentiate with respect to p and raise
the index gpk̄. We find

∇k̄Fk̄j
α
β

= gpk̄∇pFk̄j
α
β

= 0

,and by the Second Bianchi Identity, we permute p and j

gpk̄∇pFk̄j
α
β

= gpk̄∇jFk̄p
α
β

Since ∇p is the covariant derivative to all the variables, we put the metric inside and get

∇k̄Fk̄j
α
β

= gpk̄∇jFk̄p
α
β

=∇j

(
gpk̄Fj̄p

α
β

)
= 0

Here, notice that gpk̄Fj̄p
α
β

= ΛF , which is the definiton of the Hermitian-Einstein equation. Hence,
we now have

∇k̄Fk̄j
α
β

=∇j (ΛF) = 0

Similarly, by the same analogue, we permute anti-holomorphic indices p̄ and j̄, and thus conclude
to 0 =∇p̄(ΛF). Finally, by taking the Yang-Mills equation, the solutions are clearly integrable in
the complex structure. So, the covariant derivative of any direction p̄ or j of ΛF is zero, which is
equivalent to say ΛF is a constant. Thus, we have shown that the Yang-Mills equation deduces
into the Hermitian-Einstein equation ΛF =µI.

∇pFpq
α
β = 0⇒∇(ΛF) = 0⇒ΛF is constant ⇒ΛF is a scalar multiple of the identity

Q.E.D.

31



References

[1] A. A. Belavin, A. M. Polyakov, A. S. Schwartz, and Yu. S. Tyupkin, Pseudoparticle solutions
of the yang-mills equations, Physics Letters B 59 (1975), no. 1, 85–87.

[2] S. K. Donaldson, Anti self-dual yang-mills connections over complex algebraic surfaces and
stable vector bundles, Proceedings of the London Mathematical Society 50 (1985), no. 1, 1–26.

[3] S. K. Donaldson and P. B. Kronheimer, The geometry of four-manifolds, Oxford University
Press, 1990.

[4] Daniel Huybrechts, Complex geometry: An introduction, Universitext, Springer, 2005.

[5] Alexander Kirillov Jr., An introduction to lie groups and lie algebras, Cambridge Studies in
Advanced Mathematics, vol. 113, Cambridge University Press, 2008.

[6] Shoshichi Kobayashi, Differential geometry of complex vector bundles, Princeton Legacy
Library, Princeton University Press, 1987.

[7] Yozo Matsushima, Holomorphic vector fields and the first chern class of a compact kähler
manifold, Journal of Differential Geometry 3 (1969), 477–480.

[8] James Clerk Maxwell, A dynamical theory of the electromagnetic field, Philosophical Transac-
tions of the Royal Society of London 155 (1865), 459–512.

[9] Andrei Moroianu, Lectures on kähler geometry, London Mathematical Society Student Texts,
vol. 69, Cambridge University Press, Cambridge, 2007.

[10] Mikio Nakahara, Geometry, topology and physics, 2nd ed., CRC Press, 2003.

[11] Elias M. Stein and Rami Shakarchi, Complex analysis, Princeton Lectures in Analysis, vol. 2,
Princeton University Press, 2003.

[12] Karen Uhlenbeck and Shing-Tung Yau, On the existence of hermitian-yang–mills connections
in stable vector bundles, Communications on Pure and Applied Mathematics 39 (1986), no. S1,
S257–S293.

[13] Hermann Weyl, Gravitation and the electron, Proceedings of the National Academy of Sciences
of the United States of America 15 (1929), no. 4, 323–334.

[14] C. N. Yang and R. L. Mills, Conservation of isotopic spin and isotopic gauge invariance,
Physical Review 96 (1954), no. 1, 191–195.

32


	Contents
	Introduction
	Preface
	Construction
	Fundamental Concepts
	Acknowledgment

	Complex Vector Bundles, Connections, and Curvature
	Vector Bundles
	Connections
	Curvature

	Characteristic Classes
	Bianchi Identity
	Chern Class

	The Yang-Mills Functional, Its Variations, and The Yang-Mills Equation
	The Yang Mills Functional
	Basic Approach - A First Glance
	Rigorous Derivation

	Examples and Solutions of The Yang-Mills Equation
	The Maxwell's Equation
	Self-Dual and Anti Self-Dual Solutions
	The Belavin-Polyakov-Schwartz-Tyuptin Instantons

	The Yang-Mills Equation on Kähler Geometry
	Properties of Kähler Manifolds
	The Hermitian-Einstein Equation
	The Yang-Mills Equation on Compact Kähler Manifolds

	References

